A NEW 3-PARAMETER CURVATURE CONDITION PRESERVED BY RICCI FLOW

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ricci curvature, circulants, and a matching condition

The Ricci curvature of graphs, as recently introduced by Lin, Lu, and Yau following a general concept due to Ollivier, provides a new and promising isomorphism invariant. This paper presents a simplified exposition of the concept, including the so-called logistic diagram as a computational or visualization aid. Two new infinite classes of graphs with positive Ricci curvature are identified. A l...

متن کامل

Mean Curvature Driven Ricci Flow

We obtain the evolution equations for the Riemann tensor, the Ricci tensor and the scalar curvature induced by the mean curvature flow. The evolution for the scalar curvature is similar to the Ricci flow, however, negative, rather than positive, curvature is preserved. Our results are valid in any dimension.

متن کامل

Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds

The aim of the present paper is to bridge the gap between the Bakry-Émery and the Lott-Sturm-Villani approaches to provide synthetic and abstract notions of lower Ricci curvature bounds. We start from a strongly local Dirichlet form E admitting a Carré du champ Γ in a Polish measure space (X,m) and a canonical distance dE that induces the original topology of X. We first characterize the distin...

متن کامل

Positivity of Ricci Curvature under the Kähler–ricci Flow

An invariant cone in the space of curvature operators is one that is preserved by a flow. For Ricci flow, the condition R ≥ 0 is preserved in all dimensions, while the conditionR ≤ 0 is preserved only in real dimension two. Positive curvature operator is preserved in all dimensions [11], but positive sectional curvature is not preserved in dimensions four and above. The known counterexamples, c...

متن کامل

Topological Entropy for Geodesic Flows under a Ricci Curvature Condition

It is known that the topological entropy for the geodesic flow on a Riemannian manifoldM is bounded if the absolute value of sectional curvature |KM | is bounded. We replace this condition by the condition of Ricci curvature and injectivity radius.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Korean Mathematical Society

سال: 2013

ISSN: 0304-9914

DOI: 10.4134/jkms.2013.50.4.829